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3 FATIGUE

A machine member loaded with a periodic stress that oscillates between

some limits is subjected to stresses called repeated, alternating, or fluctuating

stresses. Often the machine members fail under the action of repeated or

fluctuating stresses. The most distinguishing characteristic of these failures

is that the stresses have been repeated a very large number of times. Hence,

the failure is called a fatigue failure. A fatigue failure begins with a small

crack. Once the crack is initiated, the stress concentration effect becomes

greater and the crack progress more rapidly. As the stressed area decreases

in size, the stress increases in magnitude until, and the remaining area finally

fails suddenly. A fatigue failure is characterized by two distinct regions. The

first one is due to the progressive development of the crack, while the second

one is due to the sudden fracture.

3.1 ENDURANCE LIMIT

Numerous tests have established that the ferrous materials have an endurance

limit defined as the highest level of alternating stress that can be withstood

indefinitely without failure. The symbol for endurance limit is S′e. The

endurance limit can be related to the tensile strength through the following

relation

S ′e =





0.504Sut Sut ≤ 200 kpsi (1400 MPa)

100 kpsi Sut > 200 kpsi

700 MPa Sut > 1400 MPa

(3.1)
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where Sut is the minimum tensile strength. The prime mark on S ′e refers to

the endurance limit of the test specimen itself, while the symbol Se represent

the endurance limit of a machine element subject to any kind of loading.

Table 3.1 shows the endurance limit for various classes of cast irons.

The endurance limit is affected by some factors such that

Se = ka kb kc S
′
e, (3.2)

where ka is the surface factor, kb is the size factor (gradient factor), and kc

is the load factor. A rough guide for the values of these factors is given in

Table 3.2.

3.1.1 Surface Factor ka

The influence of the surface of the specimen is described by the modification

factor ka which depends upon the quality of the finishing. The following

formula describe the surface factor

ka = aSbut, (3.3)

where Sut is the tensile strength and some values for a and b are listed in

Table 3.3.

3.1.2 Size factor kb

The size factor for bending and torsion can be expressed as follows

kb =





(
d

0.3

)−0.1133

in 0.11 ≤ d ≤ 2 in,

(
d

7.62

)−0.1133

mm 2.79 ≤ d ≤ 51 mm,

(3.4)
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where d is the diameter of the bar. For larger sizes, the size factor varies from

0.06 to 0.075. There is no size effect for axial loading such that kb = 1. To

apply Eq. (3.4) for a nonrotating round bar in bending or for a noncircular

cross section, we need to define the effective dimension de. This effective

dimension is obtained by equating the volume of material stressed at and

above 95 percent of the maximum stress to the same volume in the rotating

beam specimen. When this two volumes are equated, the lengths cancel

and only the areas have to be considered. For a rotating round section or a

rotating hollow round, the 95 percent stress area is a ring having the outside

diameter d and the inside diameter 0.95d. Hence, the 95 percent stress area

is

A0.95σ =
π

4
[d2 − (0.95d)2] = 0.0766d2. (3.5)

For nonrotating solid or hollow rounds, the 95 percent stress area is twice

the area outside of two parallel chords having a spacing of 0.95D, where D

is the diameter. Therefore the 95 percent stress area in this case is

A0.95σ = 0.0105D2. (3.6)

Setting Eq. (3.5) equal to Eq. (3.6) and solving for d, we obtain the effective

diameter

de = 0.370D, (3.7)

which is the effective size of round corresponding to a nonrotating solid or

hollow round.

A rectangular section of dimensions h× b (Fig. 3.1) has A0.95σ = 0.05hb,

and

de = 0.808(hb)1/2. (3.8)
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For a channel section

A0.95σ =





0.5ab axis 1-1,

0.052xa + 0.1tf(b− x) axis 2-2,
(3.9)

where a, b, x, tf are the dimensions of the channel section as depicted in

Fig. 3.1(c). The 95 percent area for an I-beam section is (Fig. 3.1d)

A0.95σ =





0.10atf axis 1-1,

0.05ba tf > 0.025a axis 2-2.
(3.10)

3.1.3 Load factor kc

The load factor has the following expression

kc =





0.923 axial loading Sut ≤ 220 kpsi (1520 MPa),

1 axial loading Sut > 220 kpsi (1520 MPa),

1 bending,

0.577 torsion and shear.

(3.11)

Hence, there is no size effect for specimens tested in axial or push-pull fatigue

and there is a definite difference between the axial fatigue limit and that in

reversed bending.

3.2 FLUCTUATING STRESSES

In design problems, it is frequently necessary to determine the stress of parts

corresponding to the situation when the stress fluctuates without passing

through zero (Fig. 3.2). A fluctuating stress is a combination of static plus

completely reversed stress. The components of the stresses are depicted in

Fig. 3.2(a), where σmin is minimum stress, σmax is the maximum stress, σa
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is the stress amplitude or the alternating stress, σm is the midrange or the

mean stress, σr is the stress range, and σs is the steady or static stress. The

steady or static stress is not the same as the mean stress. It can have any

value between σmin and σmax. This steady stress exists because of a fixed load

and is usually independent of the varying portion of the load. The following

relations between the stress components are useful

σm =
σmax + σmin

2
, (3.12)

σa =
σmax − σmin

2
. (3.13)

The stress ratios

R =
σmin

σmax
and

A =
σa
σm

, (3.14)

are used to describe the fluctuating stresses.

3.3 CONSTANT LIFE FATIGUE DIAGRAM

Figure 3.3 illustrate the graphical representation of various combinations of

mean and alternating stress. This diagram is called a constant life fatigue

diagram because it has lines corresponding to a constant 106 cycle (or ”infi-

nite”) life. The horizontal axis (σa = 0) corresponds to static loading. Yield

and tensile strength are represented by points A andB, while the compressive

yield strength is −Sy (point A′). If σm = 0 and σa = Sy (point A′′), the stress

fluctuates between +Sy and −Sy. Line AA′′ corresponds to fluctuations hav-

ing a tensile peack of Sym, and line A′A′′ corresponds to compressive peaks

equal to −Sy. Points C,D,E, and F correspond to σm = 0 for various values
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of fatigue life. Lines CB,DB,EB and FB are estimated lines of constant

life. This empirical procedure to obtain constant life lines was developed by

Goodman and these lines are called Goodman lines. The significance of the

various areas on the diagram are

• Area A”HCGA correspond to a life of at least 106 cycles and no yield-

ing.

• Area HCGA′′H correspond to less than 106 cycles of life and no yield-

ing.

• Area AGB in addition to area A′HCGA correspond to 106 cycles of

life when yielding is acceptable.

Example 3.1

Estimate the S − N curve and a family of constant life fatigue curves

pertaining to the axial loading of precision steel parts having Su = 120 ksi,

Sy = 100 ksi (Fig. 3.4). All cross-sections dimensions are under 2 in.

Solution

According with Table 3.2, the gradient factor kb = 0.9. The 103 -cycle

peak alternating strength for axially loaded material is S = 0.75 Su = 0.75

(120) = 90 ksi. The 106 -cycle peak alternating strength for axially loaded

ductile material is Se = kakbkcS
′
e, where S ′e = (0.5)(120) = 60 ksi, kc = 1,

and from Fig. 3.5 ka = 0.9. The endurance limit is Se = 48.6 ksi. The

estimated S − N curve is plotted in Fig. 3.6. From the estimated S − N

curve results that the peak alternating strengths at 104 and 105 cycles are,

respectively 76.2 and 62.4 ksi. The σm − σa curves for 103, 104, 105 and 106
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cycles of life are given in Fig. 3.6.

3.4 FATIGUE LIFE FOR RANDOMLY VARYING LOADS

Predicting the life of parts stressed above the endurance limit is at best a

rough procedure. For the large percentage of mechanical and structural parts

subjected to randomly varying stress cycle intensity (for example, automotive

suspension and aircraft structural components), the prediction of fatigue life

is further complicated. The procedure for dealing with this situation is often

called the linear cumulative damage rule. If a part is cyclically loaded at

a stress level causing failure in 105 cycles, then each cycle of that loading

consumes one part in 105 of the life of the part. If other stress cycles are

interposed corresponding to a life of 104 cycles, each of these consumes one

part in 104 of the life, and so on. When, on this basis, 100 percent of the

life has been consumed, fatigue failure is predicted. The linear cumulative

damage rule is expressed by the following equation

n1

N1
+

n2

N2
+ ...+

nk
Nk

= 1 or
j=k∑

j=1

nj
Nj

= 1 (3.15)

where n1, n2..., nk represent the number of cycles at specific overstress levels,

and N1, N2, ..., Nk represent the life (in cycles) at these overstress levels, as

taken from the appropriate S − N curve. Fatigue failure is predicted when

the above sum is equal to 1.

Example 3.2

The stress fluctuation of a part during a 6 seconds of operation. The part

has Su = 500 MPa, and Sy = 400 MPa. The S − N curve for bending is
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given in Fig. 3.7(c). Estimate the life of the part.

Solution

The 6-second test period includes, in order, two cycles of fluctuation

(a), three cycles of fluctuation (b), and two cycles of (c). Each of these

fluctuations corresponds to a point in Fig. 3.7(b). For a the stresses are

σm = 50 MPa, σa = 100 MPa.

Points (a), (b), (c) in Fig. 3.7(b) are connected to the point σm = Su,

which gives a family of four ”Goodman lines” corresponding to some constant

life.

The Goodman lines intercept the vertical axis at points a′ through c′.

Points a through d correspond to the same fatigue lives as points a′ through

d′. These lives are determined from the S − N curve in Fig.3.7(c). The life

for a and a′ can be considered infinite.

Adding the portions of life cycles b, c gives

nb
Nb

+
nc
Nc

=
3

3× 106
+

2

2× 104
= 0.000011.

This means that the estimated life corresponds to 1/0.000011 or 90909 peri-

ods of 6-second duration. This is equivalent to 151.5 hours.

3.5 CRITERIA OF FAILURE

Various techniques are used to plot the fatique failure test results of a part

subjected to fluctuating stress. For example, the modified Goodman diagram

(Fig. 3.8) has the mean stress plotted on abscissa and all the stress compo-

nents on the ordinate. The mean-stress line is a 45◦ line from the origin to the

tensile strength of the part. The modified Goodman diagram consists from
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the lines constructed to Se above and below the origin. The yield strength is

also plotted on both axes, because yielding would be the criterion of failure

if σmax > Sy.

The fatigue diagram showing various criteria of failure is depicted is

Fig. 3.9. This diagram is used for analysis and design purposes. The fa-

tigue limit Se or the finite-life strength Sf is plotted on the ordinate. The

yield strength is plotted on the ordinate too. The mean-stress axis has the

yield strength Sy and the tensile strength Sut plotted along it. Four criteria

of failure are depicted: the Soderberg, the modified Goodman, the Gerberg,

and yielding. Only the Soderberg criterion guards against yielding. The

linear criteria presented in Fig. 3.9 can be described by the equation of a

straight line

x

a
+
y

b
= 1. (3.16)

In the above expresson a and b are the x and y intercepts, respectively. The

equation for Soderberg line is

Sa
Se

+
Sm
Sy

= 1. (3.17)

Similarly, the modified Goodman relation is

Sa
Se

+
Sm
Sut

= 1. (3.18)

The line representing the Gerber theory has a better chance of passing

through the central portion of the failure points and should be a better

predictor. This theory is also called the Gerber parabolic relation because

the equation is

Sa
Se

+

(
Sm
Sy

)2

= 1. (3.19)
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The yielding line is described by the equation

Sa
Sy

+
Sm
Sy

= 1. (3.20)

The stresses σa and σm can replace Sa and Sm in Eqs. (3.17) to (3.19) if each

strength is divided by the factor of safety n. Then the Soderberg equation

becomes

σa
Se

+
σm
Sy

=
1

n
. (3.21)

The modified Goodman equation is

σa
Se

+
σm
Sut

=
1

n
, (3.22)

while the Gerber equation becomes

nσa
Se

+
(
nσm
Sut

)2

= 1. (3.23)

The meaning of these equations is illustrated in Fig. 3.10, using the modified

Goodman theory as example. The safe-stress line through A is constructed

parallel to the modified Goodman line. The safe-stress line is the locus of all

sets of σa − σm stresses having a factor of safety n, that is Sm = nσm and

Sa = nσa.
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Figures Caption

Figure 3.1 Beams cross sections

a) solid round

b) rectangular section

c) channel section

d) web section

Figure 3.2 Time varying stresses

a) sinusoidal fluctuating stress

b) repeated stress

c) reversed sinusoidal stress

Figure 3.3 Constant life fatigue diagram

Figure 3.4 Axial loading cylinder

a) loading diagram

b) fluctuating load

Figure 3.5 Surface factor

Figure 3.6 Life diagram

Figure 3.7 Fatigue analysis of a cantilever beam

a) bending stress

b) stress fluctuation

c) life diagram

d) loading diagram

Figure 3.8 Goodman diagram

Figure 3.9 Various criteria of failure

Figure 3.10 Safe stress line
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Figure 3.2
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Table 3-2. Generalized Fatigue Strength Factors for Ductile Materials

BENDING AXIAL TORSION
a. Endurance limit
Se = kakbkcS

′
e, where S ′e is the specimen

endurance limit

kc (load factor) 1 1 0.58
kb (gradient factor)
diameter< (0.4 in or 10 mm) 1 0.7 - 0.9 1
(0.4 in or 10 mm) < diameter <
(2 in or 50 mm) 0.9 0.7 - 0.9 0.9

ka (surface factor) See Fig. 3.5
b. 103 -cycle strength 0.9 Su 0.75 Su 0.9 Sa

us

aSus ≈ 0.8Su for steel; Sus ≈ 0.7Su for other ductile materials.

Source: Robert C. Juvinall, Kurt M. Marshek, Fundamentals of Machine Component Design,
2nd ed.,John Wiley & Sons, 1991, p. 270.



Table 3-3. Surface Finish Factor

SURFACE FACTOR a EXPONENT
FINISH kpsi MPa b
Ground 1.34 1.58 -0.085
Machined or cold-drawn 2.70 4.51 -0.256
Hot-rolled 14.4 57.7 -0.718
As forged 39.9 272.0 -0.995

Source: Joseph E. Shigley, Charles R. Mischke, Mechanical Engineering Design, 5d ed.,McGraw-
Hill, 1989, p. 123.


